Hyperoxia arrests pulmonary development in newborn rats via disruption of endothelial tight junctions and downregulation of Cx40

نویسندگان

  • CHONG LI
  • JIANHUA FU
  • HONGYU LIU
  • HAIPING YANG
  • LI YAO
  • KAI YOU
  • XINDONG XUE
چکیده

This study investigated changes in vascular endothelial cell tight junction structure and the expression of the gene encoding connexin 40 (Cx40) at the early pneumonedema stage of hyperoxia‑induced bronchopulmonary dysplasia (BPD) in a newborn rat model. A total of 96 newborn rats were randomly assigned to one of the following two groups, the hyperoxia group (n=48) and the control group (n=48). A hyperoxia-induced BPD model was established for the first group, while rats in the control group were maintained under normoxic conditions. Extravasation of Evans Blue (EB) was measured; the severity of lung injury was assessed; a transmission electron microscope (TEM) was used to examine the vascular endothelial cell tight junction structures, and immunohistochemical assay, western blotting and reverse transcription-polymerase chain reaction (RT-PCR) were used to evaluate the expression of Cx40 at the mRNA and protein level. Our findings showed that injuries due to BPD are progressively intensified during the time-course of exposure to hyperoxic conditions. Pulmonary vascular permeability in the hyperoxia group reached the highest level at day 5, and was significantly higher compared to the control group. TEM observations demonstrated tight junctions between endothelial cells were extremely tight. In the hyperoxia group, no marked changes in the tight junction structure were found at days 1 and 3; paracellular gaps were visible between endothelial cells at days 5 and 7. Immunohistochemical staining revealed that the Cx40 protein is mainly expressed in the vascular endothelial cells of lung tissue. Western blotting and RT-PCR assays showed a gradual decrease in Cx40 expression, depending on the exposure time to hyperoxic conditions. However, the Cx40 mRNA level reached a trough at 5 days. Overall, our study demonstrated that exposure to hyperoxia damages the tight junction structures between vascular endothelial cells and downregulates Cx40. We therefore conclude that hyperoxia may participate in the regulation of pulmonary vascular endothelial permeability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperoxia disrupts pulmonary epithelial barrier in newborn rats via the deterioration of occludin and ZO-1

BACKGROUND Prolonged exposure to hyperoxia in neonates can cause hyperoxic acute lung injury (HALI), which is characterized by increased pulmonary permeability and diffuse infiltration of various inflammatory cells. Disruption of the epithelial barrier may lead to altered pulmonary permeability and maintenance of barrier properties requires intact epithelial tight junctions (TJs). However, in n...

متن کامل

Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown.

BACKGROUND Bronchopulmonary dysplasia (BPD) is a common complication in preterm infants that involves the downregulation of tight junction (TJ) proteins. However, the mechanism underlying downregulation of the expression of TJ proteins during at the early stages of hyperoxia-induced BPD remains to be understood. Here, we aimed to identify the role of caveolin-1 (Cav-1) in hyperoxia-induced pulm...

متن کامل

Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats.

Supplemental oxygen treatment in preterm infants may cause bronchopulmonary dysplasia (BPD), which is characterized by alveolar simplification and vascular disorganization. Despite type II alveolar epithelial cell (AEC II) damage being reported previously, we found no decrease in the AEC II-specific marker, surfactant protein C (SP-C), in the BPD model in our previous study. We thus speculated ...

متن کامل

The effect of omega- 3 polyunsaturated fatty acids on endothelial tight junction occludin expression in rat aorta during lipopolysaccharide-induced inflammation

Objective(s): Occludin is essential for proper assembly of tight junctions (TJs) which regulate paracellular endothelial permeability. Omega-3 polyunsaturated fatty acids (Ω-3 PUFA) protect endothelial barrier function against injury. Materials and Methods: We examined anti-inflammatory effect of Ω-3 PUFA intake (30 mg/kg/day for 10 days) on expression and location of occludin in the aorta of ...

متن کامل

CALL FOR PAPERS Biomarkers in Lung Diseases: from Pathogenesis to Prediction to New Therapies Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats

Hou A, Fu J, Yang H, Zhu Y, Pan Y, Xu S, Xue X. Hyperoxia stimulates the transdifferentiation of type II alveolar epithelial cells in newborn rats. Am J Physiol Lung Cell Mol Physiol 308: L861–L872, 2015. First published February 13, 2015; doi:10.1152/ajplung.00099.2014.—Supplemental oxygen treatment in preterm infants may cause bronchopulmonary dysplasia (BPD), which is characterized by alveol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2014